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Abstract

Recently de Thanhoffer de Völcsey and Van den Bergh classified the
Euler forms on a free abelian group of rank 4 having the properties of
the Euler form of a smooth projective surface. There are two types of
solutions: one corresponding to P1

× P1 (and noncommutative quadrics),
and an infinite family indexed by the natural numbers. For m = 0, 1
there are commutative and noncommutative surfaces having this Euler
form, whilst for m ≥ 2 there are no commutative surfaces. In this paper
we construct sheaves of maximal orders on surfaces having these Euler
forms, giving a geometric construction for their numerical blowups.
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1 Introduction

In a recent paper de Thanhoffer de Völcsey and Van den Bergh provide a nu-
merical classification of possibly noncommutative surfaces with an exceptional
sequence of length 4 [21]. Their classification describes the possible bilinear
forms on a free abelian group of rank 4 mimicking the properties of the numer-
ical Grothendieck group and Euler form on a smooth projective surface.

Those properties are described as follows: for a finitely generated free abelian
group Λ, a nondegenerate bilinear form 〈−,−〉 : Λ × Λ → Z and an automor-
phism s ∈ Aut(Λ) we will ask that

Serre automorphism 〈x, s(y)〉 = 〈y, x〉 for x, y ∈ Λ;

unipotency s− idΛ is nilpotent;

rank rk(s− idΛ) = 2;

By the nondegeneracy we know that if we choose a basis for Λ, and express the
bilinear form (resp. the Serre automorphism) as the Cartan or Gram matrix M
(resp. the Coxeter matrix C), we have the relation

C = −M−1M t, (1)

so it suffices to specify the bilinear form.
The reason for considering these properties is explained in [21]: it can be

shown that the action of the Serre functor on the Grothendieck group for all
smooth projective surfaces has the extra property that s − idΛ has rank pre-
cisely 2, whilst the unipotency of the Serre functor holds in complete general-
ity [14, lemma 3.1]. Independently, Kuznetsov developed a similar notion in
[28].

Before giving the classification, recall that mutation and shifting of excep-
tional collections gives an action of the signed braid group ΣBn, and we will
only be interested in the classification (of bilinear forms) up to this action.

For rank 3 the analogous problem is classical and is described by the Markov
equation. In that case the only solution is given by P2, and its noncommutative
analogues. The structure of the numerical Grothendieck group in this case can
be read off from examples 9 and 10.

For rank 4 there are more solutions, which are described by de Thanhoffer
de Völcsey and Van den Bergh in their main theorem [21, theorem A]. They
show that, up to the action of the signed braid group, the matrices




1 2 2 4
0 1 0 2
0 0 1 2
0 0 0 1


 (A)

and 


1 m 2m m
0 1 3 3
0 0 1 3
0 0 0 1


 (Bm)
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for m ∈ N, describe all possible bilinear forms 〈−,−〉 on Z4 satisfying the
properties.

The case (A) corresponds to the quadric surface P1 × P1 (and its noncom-
mutative analogues [39]). Using proposition 14 the cases (Bm) with m = 0
(resp. 1) correspond to the disjoint union of P2 (and its noncommutative ana-
logues [6, 14]) with a point, resp. the blowup of P2 in a point (and its noncom-
mutative analogues [38]).

For (Bm) with m = 2 de Thanhoffer de Völcsey–Presotto constructed fami-
lies of noncommutative P1-bundles on P1 of rank (1, 4), and showed that these
give the correct Euler form [22].

In this paper we give a streamlined construction of families of noncommu-
tative surfaces with Grothendieck group Z4 and Euler form (Bm) for all m ≥ 2
using completely different methods. This is achieved by constructing a sheaf
of maximal orders on Blx P

2, as done in section 3. The main technique here is
a noncommutative generalisation of Orlov’s blowup formula, as given in theo-
rem 30, and which is probably of independent interest.

The result of the constructions in this paper can be summarised as follows.

Theorem 1. For everym ≥ 2 there exist maximal orders on Blx P
2 ∼= F1 whose

Euler form is of type (Bm).

In particular, we provide an actual geometric construction for the numerical
blowups of [21]. There are three degrees of freedom in our construction, which
is the expected number of degrees of freedom, but a complete classification of
noncommutative surfaces of rank 4 is out of reach.

In section 4 we give some properties of the orders we have constructed in
the context of the minimal model program for orders. Especially for m = 2
they turn out to be interesting, as we get interesting new examples of so called
half ruled orders. These are also the only ones which are del Pezzo, which is
somewhat unexpected as the analogous construction for blowing up a point on
the ramification locus always gives a del Pezzo order.

For the case ofm = 2 there are now two constructions of an abelian category
with the prescribed properties: we have that it is possible to view the abelian
category both as a blowup, and a P1-bundle, just like it is possible for m = 1 to
view Blx P

2 as the Hirzebruch surface F1 := P(OP1 ⊕OP1(−1)) and vice versa.
In a future work [10] we give a comparison of the two constructions.

Acknowledgements The authors would like to thank Daniel Chan and Colin
Ingalls for interesting discussions regarding the properties of our orders from the
point of view of the minimal model program. The authors would like to thank
Alexander Kuznetsov and Colin Ingalls for interesting comments on a draft
version of this paper.
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This is the accepted version of the following article: Construction of noncommu-

tative surfaces with exceptional collections of length 4, which has been published in

final form at Journal of London Mathematical Society.
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2 Preliminaries

2.1 Artin–Schelter regular algebras

Artin and Schelter introduced in [5] a class of graded algebras that were to serve
as the noncommutative analogues of the polynomial ring k[x1, . . . , xd]. They are
defined as follows.

Definition 2. Let A be a connected graded k-algebra. Then we say A is Artin–
Schelter regular of dimension d if

1. gl dimA = d;

2. GKdimA = d;

3. A is Gorenstein (with respect to the integer d), i.e. there exists l ∈ Z such
that

ExtiGrA(kA, A)
∼=

{
Ak(l) i = d,

0 i 6= d.
(2)

Of particular importance in the study of noncommutative surfaces is the
case d = 3, and we will restrict ourselves to this case. Moreover we only consider
3-dimensional AS-regular algebras which are generated in degree 1. For these
algebras, it turns out there are two possible Hilbert series [5, theorem 1.5(i)],
one of which is precisely that of k[x, y, z]. These algebras are referred to as
quadratic AS-regular algebras and the associated abelian category qgrA is called
a noncommutative plane. The other class of algebras is related to P1 × P1, and
is of no role here.

Quadratic AS-regular algebras were classified in terms of triples of geometric
data [6, definition 4.5].

Definition 3. An elliptic triple is a triple (C, σ,L) where

1. C is a divisor of degree 3 in P2;

2. σ ∈ Aut(C);

3. L is a very ample line bundle of degree 3 on C.

We say that it is regular if moreover

L ⊗ (σ∗ ◦ σ∗(L)) ∼= σ∗(L) ⊗ σ∗(L). (3)

The classification of noncommutative planes using regular triples is origi-
nally due to Artin–Tate–Van den Bergh [6, §4], and later done using different
techniques by Bondal–Polishchuk [14].

Example 4. The generic case in the classification is given by the Sklyanin alge-
bra. The geometric data in this case is an elliptic curve, and the automorphism
is given by a translation.
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It is well known that a Sklyanin algebra can be written as the quotient
of k〈x, y, z〉 by the ideal generated by





axy + byx+ cz2 = 0

ayz + bzy + cx2 = 0

azx+ bxz + cy2 = 0

(4)

where [a : b : c] ∈ P2 \ S and S is an explicitly known finite set of 12 points.

We will be particularly interested in the case where the Sklyanin algebra A
is finite over its center. This property is visible in the geometric data [7, theo-
rem 7.1].

Theorem 5 (Artin–Tate–Van den Bergh). The algebraA is finite over its center
if and only if the automorphism in the associated elliptic triple is of finite order.

Remark 6. By inspecting the automorphism groups of cubic curves it can be
seen that there are only 4 point schemes (out of 9 point schemes appearing in
[14, table 1]) that are allowed in order for the automorphism to be of finite order.
These are the elliptic curves, the nodal cubic, the triangle of lines and a conic
and line in general position. For an alternative approach using the classification
of maximal orders, see remark 21.

We will use the following properties of the algebras which are finite over
their center:

1. we can obtain the category qgrA as the category cohS, where S is a sheaf
of maximal orders on P2, as explained in lemma 22;

2. there exist so called fat points in qgrA, as explained in section 2.4.

These will allow us to construct a sheaf of maximal orders on F1
∼= Blx P

2 with
the desired properties in section 3.

2.2 Semiorthogonal decompositions

We will also use the notion of semiorthogonal decomposition and exceptional
sequences. We will denote T a k-linear triangulated category, and all construc-
tions are k-linear. For more details one is referred to [34].

Definition 7. A semiorthogonal decomposition of T is a sequence (S1, . . . ,Sn)
of full triangulated subcategories of T , such that there exists a filtration

0 = T0 ⊆ T1 ⊆ . . . ⊆ Tn = T (5)

where Ti ⊆ T is a (left) admissible subcategory such that Si ∼= Ti/Ti−1. We will
denote this by

T = 〈S1, . . . ,Sn〉 . (6)

5



A special case of a semiorthogonal decomposition is provided by a full excep-
tional sequence. In this case we have that the Si’s are equivalent to the derived
category of the base field k.

Definition 8. We say that E ∈ T is an exceptional object if

HomT (E,E[m]) ∼=

{
k m = 0

0 m 6= 0
. (7)

A sequence (E1, . . . , En) of objects Ei ∈ T is an exceptional sequence if each Ei
is exceptional, and HomT (Ei, Ej [m]) = 0 for all i > j and m. It is said to be
strong if moreover HomT (Ei, Ej [m]) = 0 for all m 6= 0. It is said to be full if it
generates the category T , or equivalently

T = 〈〈E1〉, . . . , 〈En〉〉 . (8)

is a semiorthogonal decomposition.

The main property of semiorthogonal decompositions that we will use in this
paper is that they are sent to direct sums by so called additive invariants. In
particular for the Grothendieck group we get in the situation of (6) that

K0(T ) ∼=

n⊕

i=1

K0(Si). (9)

In particular, if T has a full exceptional collection of length n, then

K0(T ) ∼= Z⊕n. (10)

The main example of a full and strong exceptional collection, and also the
example that motivated the construction in section 3 is Beilinson’s collection
on P2 [9].

Example 9. The derived category of P2 has a full and strong exceptional
collection

Db(P2) = 〈OP2 ,OP2(1),OP2(2)〉 (11)

whose quiver is
x0
y0
z0

x1
y1
z1

, (12)

and the relations are 



x0y1 = y0x1

x0z1 = z0x1

y0z1 = z0y1.

(13)
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In particular, this means that K0(D
b(P2)) ∼= Z⊕3, and we can read off that the

Gram (or Cartan) matrix is

M =



1 3 6
0 1 3
0 0 1


 , (14)

whilst the Coxeter matrix is

C =



−10 −6 −3
15 8 3
−6 −3 −1


 . (15)

This example can be generalised to noncommutative P2’s in the following
way.

Example 10. The derived category of qgrA, where A is a quadratic 3-dimen-
sional Artin–Schelter regular algebra, has a well-known full and strong excep-
tional collection mimicking that of Beilinson for P2, given by

Db(qgrA) = 〈πA, πA(1), πA(2)〉 (16)

where π denotes the quotient functor π : grA → qgrA, and A(i) denotes the
grading shift of A. More details can be found in [1, theorem 7.1].

The quiver has the same shape as (12), and the relations can be read off
from the presentation of A as a quotient of k〈x, y, z〉 by 3 quadratic relations as
in (13), see also lemma 23.

For instance in the case of the Sklyanin algebra of example 4 they are




ax0y1 + by0x1 + cz0z1 = 0

ay0z1 + bz0y1 + cx0x1 = 0

az0x1 + bx0z1 + cy0y1 = 0

(17)

The Cartan and Coxeter matrices A and C describing the Euler form and the
Serre functor only depend on the structure of the quiver with relations, and
this stays the same, so we obtain the matrices from (14) and (15). In [21] it
is explained how up to the signed braid group action introduced in section 2.3
this is the only solution of rank 3.

2.3 Mutation

We quickly recall the theory of mutations of exceptional sequences.

Definition 11. Let T be an Ext-finite triangulated category and let (E,F ) be
an exceptional pair of objects in T . We define the left mutation LE F as the
cone of the morphism (since the pair is exceptional, the cone is unique up to
unique isomorphism).

HomT (E,F )⊗ E → F → LE F (18)

7



If E := (E1, . . . En) is an exceptional collection in T we define the mutation at i
to be the exceptional collection (E1, . . . ,LEi

Ei+1, Ei, . . . , En).
These mutations can be interpreted as an action of the braid group on n strings,

denoted Bn, on the set of all exceptional collections. To see this, let σ1, . . . , σn−1

be the standard generators for Bn, then σi acts on an exceptional collection via
mutation at i, i.e.

σi(E) := (E1, . . . ,LEi
Ei+1, Ei, . . . , En). (19)

Remark 12. By a celebrated theorem by Kuleshov and Orlov [25] we know
that for a del Pezzo surface X the braid group Bm (where m = rkK0(X)) acts
transitively on the set of exceptional collections in Db(X).

Inspired by [21] we also consider the action of the signed braid group, which
also takes shifting into account.

Definition 13. The signed braid group ΣBn is the semidirect product Bn⋊(Z/2Z)n,
where (Z/2Z)n acts on Bn by considering the quotient Bn ։ Symn. As such,
the signed braid group has 2n− 1 generators:

• n− 1 generators σ1, . . . , σn−1, as for the braid group Bn,

• n generators ǫ1, . . . , ǫn, as for (Z/2Z)
n.

These generators satisfy the relations





σiσj = σjσi |i− j| ≥ 2

σiσi+1σi = σi+1σiσi+1 i = 1, . . . , n− 2

ǫ2i = 1

ǫiǫj = ǫjǫi

ǫiσiǫi+1 = σi i = 1, . . . , n− 1.

(20)

In [21, §4] the rules for computing the action of ΣBn on a bilinear form 〈−,−〉
are given. These rules naturally generalize the induced action of Bn on the Euler
form on the Grothendieck group K0(T ). We will construct an abelian category
of “geometric origin” which has a Grothendieck group that is in the same orbit
as the matrix (Bm). To do so we will use the representative of the equivalence
class found in the next proposition.

Proposition 14. The matrices (Bm) are mutation equivalent to the matrices




1 3 6 m
0 1 3 m
0 0 1 m
0 0 0 1


 (B′

m)

for n ∈ N.
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Proof. We have that ǫ1ǫ3σ3σ1σ2σ3 sends (B′
m) to (Bm). The mutations σ1σ2σ3

provide a shift in the helix, whilst the mutation σ3 at that point corresponds to
the mutation that sends (OP2 ,OP2(1),OP2(2)) to (OP2 ,TP2(−1),OP2(1)).

The intermediate steps are

σ3(B
′
m) =




1 3 −5m 6
0 1 −2m 3
0 0 1 −m
0 0 0 1




σ2σ3(B
′
m) =




1 m 3 6
0 1 2m 5m
0 0 1 3
0 0 0 1




σ1σ2σ3(B
′
m) =




1 −m −m −m
0 1 3 6
0 0 1 3
0 0 0 1




σ3σ1σ2σ3(B
′
m) =




1 −m −2m −m
0 1 −3 3
0 0 1 −3
0 0 0 1




ǫ3σ3σ1σ2σ3(B
′
m) =




1 −m −2m −m
0 1 3 3
0 0 1 3
0 0 0 1




(21)

2.4 Fat point modules

According to [35, §7] we take:

Definition 15. A fat point module for A is a graded module F satisfying the
following properties:

1. F is generated by F0

2. The Hilbert function dimk Fn is a constant ≥ 2, which is called the mul-
tiplicity.

3. F has no nonzero finite-dimensional submodules.

4. πF ∈ qgrA is simple

A fat point is the isomorphism class of a fat point module in qgrA.

9



The following result tells us that fat point modules for quadratic Artin–
Schelter regular algebras which are finite over their center behave particularly
well.

By the classification of those algebras which are finite over their center we
know that such an algebra is described by an elliptic triple (E, σ,L) where σ is
an automorphism of finite order. We will denote

s := min{k | σk,∗(L) ∼= L}. (22)

It is this integer, and not the order of σ (which will be denoted n) that is the
important invariant of the triple (E, σ,L). Observe that we have s | n. The
following proposition then describes the exact value of s, which depends on the
behaviour of the normal element g which lives in degree 3 [6, theorem 6.8].

Proposition 16. If (E, σ,L) is the regular triple associated to an Artin–Schelter
regular algebra A which is finite over its center, then the multiplicity of the fat
point modules of A is

s =

{
n gcd(n, 3) = 1

n/3 gcd(n, 3) = 3.
(23)

Proof. In [7, theorem 7.3] it is shown that A[g−1] is Azumaya of degree s.
Now by [2, lemma 5.5.5(i)] we have that s is the order of the automorphism η
introduced in [7, §5]. By [2, theorem 5.3.6] we have that η = σ3, hence s is n
or n/3 depending on gcd(n, 3).

Moreover, by [2, lemma 5.5.5(ii)] we have that all fat point modules are of
multiplicity s.

Remark 17. It can be shown that a Sklyanin algebra associated to a translation
of order 3 has the property that qgrA ∼= cohP2. This case is not considered in
the remainder of this paper.

We will also need the following two facts about fat point modules.

Proposition 18. Fat point modules are g-torsion free.

Proof. Let M be a simple graded A-module. Then there exists an n ∈ Z such
that Mi = 0 for all i 6= n. To see this, note that if Mi 6= 0 and Mn 6= 0 for
some i > n, then the truncation M≥n+1 is a non-trivial submodule of M .

In particular, let F be a fat point module and M ⊂ F a simple graded
submodule. By the above and definition 15(2). M is finite dimensional, imply-
ing M = 0 by definition 15(3).

Hence F has a trivial socle. As such we can apply [7, proposition 7.7(ii)] from
which the lemma follows because F cannot be an extension of point modules as
we assumed πF ∈ qgrA to be simple.

Lemma 19. The fat point module F is invariant under triple degree shifting,
i.e. there exists an isomorphism in grA:

F ∼= (F (3))≥0 . (24)

10



Proof. This is direct corollary of proposition 18: the isomorphism is given by
multiplication by g.

3 Construction

3.1 Noncommutative planes finite over their center

Consider a 3-dimensional quadratic Artin–Schelter-regular algebra A which is
finite over its center Z(A). Using theorem 5 we know that this is the case
precisely when the automorphism in the associated elliptic triple is of finite
order.

In this case we can consider

X := ProjZ(A), (25)

and the sheafification R of A over X . This is a sheaf of noncommutative OX -al-
gebras, coherent as OX -module. Often, but not always, we have that X ∼= P2 [3,
theorem 5.2]. It is possible to improve this situation by considering a finite cover
of X .

The center Z(R), which is not necessarily OX , is a (coherent) sheaf of com-
mutative OX -algebras, hence we can consider

f : Y := Spec
X
Z(R) → X. (26)

Because Z(R) is coherent as an OX -module the projection map f is finite.
The main result about Y , for any Artin–Schelter regular algebra finite over

its center, is that Y is isomorphic to P2. This was proven:

1. by Artin for Sklyanin algebras associated to points of order coprime to 3,
where X ∼= Y , as mentioned before,

2. by Smith–Tate for all Sklyanin algebras [36],

3. by Mori for algebras of type S1 [30] (these have a triangle of P1’s as their
point scheme),

4. and finally by Van Gastel in complete generality [41], with an analogous
proof in [2, theorem 5.3.7].

We will denote by S the sheaf of algebras on Y induced byR, so the situation
is described as follows.

S R = f∗(S)

P2 ∼= Y := Spec
X
Z(R) X.

f

(27)

The sheaf of algebras S has many pleasant properties and will be used in
the construction.

11



Lemma 20. S is a sheaf of maximal orders on P2 of rank s2, with s as in
proposition 16.

Proof. By the discussion above we have Y ∼= P2, so that S is a maximal order
follows from [29, proposition 1]. Observe that the notation in the statement of
loc. cit. is somewhat unfortunate, and should be taken as in (27).

It is locally free because it is a reflexive sheaf over a regular scheme of
dimension 2, and the statement on the rank follows from [7, theorem 7.3].

Using this we can decompose P2 into a ramification divisor C and its com-
plement, the Azumaya locus.

Remark 21. It is also possible to classify the curves that can appear as rami-
fication divisors for a maximal order on P2 using the Artin–Mumford sequence
[4], as explained in [37, lemma 1.1(2)]. This gives the same result as remark 6,
taking care of the distinction between the point scheme and the ramification
divisor.

The noncommutative plane associated to the algebra A is the abelian cate-
gory qgrA. In the case where A is finite over its center we have a second interpre-
tation for this category, namely as the category of coherent R-and S-modules.

Lemma 22. There are equivalences of categories

qgrA ∼= cohR ∼= cohS. (28)

Proof. The equivalence QGrA ∼= QcohR is given by the restriction of the

equivalence (̃−) : QGrZ(A) → QcohX . Similarly there is an equivalence
of categories QcohZ(R) ∼= QcohY , and one easily checks that this restricts
to QcohR ∼= QcohS (see for example [15, proposition 3.5]). This equivalence
also restricts to noetherian objects.

3.2 Description of the exceptional sequence

We will use the notation Si ∈ cohS for the images of πA(i) ∈ qgrA under the
above equivalences. Similarly we fix a fat point module F and let F ∈ cohS be
its image. The collection

(S0,S1,S2,F) (29)

in Db(S) is the noncommutative analogue of OP2 ,OP2(1),OP2 , k(x), where k(x)
is the skyscraper in a closed point x. This is not an exceptional collection
for Db(P2): we have that Ext2(k(x),OP2 (i)) 6= 0 for all i, but it will become
one after blowing up at p.

The point we wish to blow up is the support of the fat point module, con-
sidered as an object in cohS. This corresponds precisely with a point of P2 \C,
where C is the ramification divisor of S. This will give us a new exceptional
object, with the appropriate number of morphisms towards it.

12



We can perform the analogous construction in the noncommutative situation.
Let x ∈ P2 \ C be the unique closed point in the support of F , where C is the
ramification locus of S.

Consider the blowup square

E = P1 Z = F1

x Y = P2.

q

j

p

i

(30)

As in section 3.3 we will use the notation p∗S for the inverse image functor
obtained from the morphism of ringed spaces (F1, p

∗(S)) → (P2,S).
As explained in example 10 the structure of Db(S) is obtained by chang-

ing the relations in the quiver according to the generators and relations for the
Artin–Schelter regular algebra. This is a well known result, and a noncommu-
tative analogue of Serre’s description of the sheaf cohomology of OPn(i).

Lemma 23. Let A be a quadratic 3-dimensional Artin–Schelter regular algebra.
Then there is a full and strong exceptional collection

Db(qgrA) = 〈πA, πA(1), πA(2)〉 , (31)

such that
HomDb(qgrA)(πA(i), πA(i + 1)) ∼= A1

Hom
D

b(qgrA)(πA(i), πA(i + 2)) ∼= A2

(32)

and the composition law in the quiver is given by the multiplication lawA1⊗kA1 ։ A2.

Proof. By [8, theorem 8.1] we have

ExtmqgrA(πA, πA(j − i)) ∼=





Aj−i m = 0

A∨
i−j−3 m = 2

0 m 6= 0, 2

. (33)

Moreover by assumption the algebra is generated in degree 1, hence we have a
complete description of the structure of the exceptional collection. That it is
full is proven in [1, theorem 7.1].

Using lemma 22 this gives a description for the derived category S as

Db(S) = 〈S0,S1,S2〉 . (34)

Lemma 24. Let F be a normalised fat point module for the algebra A and
let s be as in proposition 16. Then

dimk (HomqgrA(πA(j), πF )) = s, (35)

and
ExtkqgrA(πA(j), πF ) = 0 (36)

for k ≥ 1.

13



Proof. Using the identities

HomqgrA(πA(j), πF ) ∼= HomqgrA(πA, πF (−j))

F (−j) ∼= F (−j + 3) (see lemma 19)
(37)

we can assume, without loss of generality, that j ≤ 0.
Recall that

HomqgrA(πA, πF (−j)) ∼= lim
i→∞

HomgrA(A≥i, F (−j)). (38)

We now claim

lim
i→∞

HomgrA(A≥i, F (−j)) ∼= HomgrA(A,F (−j)) ∼= F−j . (39)

The lemma follows by combining this claim with proposition 16.
To prove the claim, note that one can compute the limit by restricting to

the directed subsystem 3N. It then suffices to prove that the natural map

αi : HomgrA(A≥3i, F (−j)) → HomgrA(A≥3i+3, F (−j)) (40)

is an isomorphism for all i ≥ 0. But this follows as its inverse is given by

βi : HomgrA(A≥3i+3, F (−j)) → HomgrA(A≥3i, F (−j)) : βi(ϕ)(x) = g−1ϕ(gx)
(41)

where g−1 : Fn → Fn−3 is the inverse of the isomorphism as in (24).
To see that the Ext vanish, we use that F (resp. F (−j)) is finitely gener-

ated (by the degree zero part) and has Gelfand–Kirillov dimension 1. By [7,
theorem 4.1] we can conclude

ExtigrA(F,A(j)) = 0 for all j and i = 0, 1 (42)

and [8, theorem 8.1] implies

ExtiqgrA(πF, πA(j)) = ExtigrA(F,A(j)) = 0 for all j and i = 0, 1 (43)

It was proven in [20, theorem 2.9.1] that qgrA satisfies the following version of
noncommutative Serre duality:

ExtiqgrA(πF, πA(j))
∼= Ext2−iqgrA(πA(j), πF (−3))∨. (44)

But the latter is isomorphic to Ext2−iqgrA(πA(j), πF )
∨ by lemma 19, which implies

the vanishing of Ext.

We will also use the following lemma in checking that the exceptional col-
lection is indeed strong, and of the prescribed form.

Lemma 25. There exists an isomorphism

Rp∗ ◦ p
∗(F) ∼= F . (45)
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Proof. Consider the divisor short exact sequence

0 → OF1
(−E) → OF1

→ j∗(OE) → 0. (46)

Applying the exact functor p∗(S) ⊗OF1
− to it we get a short exact sequene of

left p∗(S)-modules

0 → p∗(S) ⊗OF1
OF1

(−E) → p∗(S) → p∗(S) ⊗OF1
j∗(OE) → 0. (47)

We have the chain of isomorphisms

p∗(S) ⊗OF1
j∗(OE)

∼= j∗ ◦ j
∗ ◦ p∗(S) projection formula

∼= j∗ ◦ q
∗ ◦ i∗(S) functoriality

∼= p∗ ◦ i∗ ◦ i
∗(S) base change for affine morphisms

∼= p∗(F⊕s)

(48)

where the last step uses that i∗(S) ∼= Mats(k) is the direct sum of the s-dimen-
sional representation corresponding to the fat point F .

Because the first two terms in (47) are p∗-acyclic, so is the third and its
direct summands p∗(F). Hence we can use the projection formula

p∗(p
∗(S) ⊗p∗(S) p

∗(F)) ∼= p∗ ◦ p
∗(S) ⊗S F ∼= F . (49)

We can now prove the main theorem of this paper, which gives a construc-
tion of noncommutative surfaces with prescribed Grothendieck group. It uses
a semiorthogonal decomposition that generalises Orlov’s blowup formula, and
which is proved in some generality in section 3.3.

Theorem 26. Let A be a quadratic 3-dimensional Artin–Schelter regular alge-
bra, finite over its center. Let F be a fat point module of A. Let p : Blx P

2 → P2

be the blowup in the point x which is the support of the S-module F as a sheaf
on P2. Let s be the integer as in (23). Then

Db(p∗S) = 〈Lp∗SS0,Lp
∗
SS1,Lp

∗
SS2, p

∗
SF〉 (50)

is a full and strong exceptional collection, whose Gram matrix is of type (B′
m),

where m = s.

Proof. By theorem 30 we obtain that the collection is indeed a full and strong
exceptional collection, where we use that F can be considered as the (noncom-
mutative) skyscraper sheaf for S, because we are in the Azumaya locus.

The structure of 〈Lp∗SS0,Lp
∗
SS1,Lp

∗
SS2〉 is described in lemma 23 using the

fully faithfulness of Lp∗S from lemma 33.
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Finally using lemma 25 we get that

Hom
D

b(p∗S)(Lp
∗
SSi, p

∗F) ∼= Hom
D

b(S)(Si,F)

∼= HomS(Si,F)
(51)

which is s-dimensional by lemma 24, and similarly we get that there are no
forward Ext’s to conclude that the collection is indeed strong.

Remark 27. There are three degrees of freedom in this construction: generi-
cally the point scheme is an elliptic curve for which we have the j-line as moduli
space, for each curve there are only finitely many torsion automorphisms, and
then there is the choice of a point in P2 \ C. There are only finitely many au-
tomorphisms of P2 that preserve C, so we get three degrees of freedom. This is
the expected number, using [11], where a formula for dimk HH

2 − dimk HH
1 is

given in terms of the number of exceptional objects.

Remark 28. The derived categoryDb(p∗S) comes with its standard t-structure.
By [40] we have that Serre duality takes on the form that it does for ordinary
smooth and projective varieties. This means that the Serre functor is com-
patible with the t-structure, as required in Bondal’s definition of geometric
t-structure [13]. In particular, it is an example of a noncommutative variety of
dimension 2 in this sense.

Remark 29. Using [34] and the full and strong exceptional collection from
theorem 26 there exists an embedding of Db(p∗S) into the derived category of
a smooth projective variety. Now in the spirit of [33, 12, 24, 23, 31] it is an
interesting question whether there exists a natural embedding, i.e. where the
smooth projective variety is associated to p∗S in a natural way. An obvious
candidate would be the Brauer–Severi scheme of the maximal order, and indeed
in the case where the automorphism is of order 2 there exists a fully faithful
embedding into Db(BS(p∗S)) by [17, §6] and [27], as the maximal order is the
even part of a sheaf of Clifford algebras. What happens for the more general
case and the study of the derived category of the Brauer–Severi scheme in this
situation, is left for future work.

3.3 Orlov’s blowup formula for orders

The main ingredient in the construction of theorem 26 is the observation that it
is possible to generalise Orlov’s blowup formula [32, theorem 4.3] to a sufficiently
nice noncommutative setting where we blow up a point on the underlying variety,
and pull back the sheaf of algebras to the blown up variety. This is a result of
independent interest.

Theorem 30. Let X be a smooth quasiprojective variety. Let A be a locally
free sheaf of orders of degree n on X such that gl dimA < +∞. Let Y be a
smooth closed subvariety such that it does not meet the ramification locus of A.
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Assume moreover that A|Y ∼= Matn(OY ). Consider the blowup square

E := P(NYX) Z := BlY X

Y X

q

j

p

i

(52)

and its noncommutative analogue obtained by pulling back the sheaf of alge-
bras A

(E,Matn(OE)) (Z, p∗A)

(Y,Matn(OY )) (X,A)

qA

jA

pA

iA

. (53)

Then we have a semiorthogonal decomposition

Db(Z, p∗(A)) =
〈
Db(X,A),Db(Y ), . . . ,Db(Y )

〉
(54)

where the first component is embedded using the functor Lp∗A, and the subse-
quent components by jA,∗(q

∗
A(−)⊗OE(kE)), for k = 0, . . . , codimX Y − 2.

Remark 31. In this case p∗A is automatically of finite global dimension.

Remark 32. The case where A = OX is Orlov’s blowup formula. Observe that
his proof works verbatim for a smooth quasiprojective variety as all morphisms
are projective, so the bounded derived category is preserved throughout. We
will use this in the proof of theorem 30.

We can prove this result by bootstrapping the original proof. To do so we
will need generalisations of some standard results in algebraic geometry such as
the adjunction between (derived) pullback and direct image, or the projection
formula. A reference for these in the setting of Azumaya algebras can be found
in [26, §10]. We will only need results that do not depend on the algebras being
Azumaya, hence in the words of remark 10.5 of op. cit. we are working with
noncommutative finite flat (and not étale) coverings.

Lemma 33. The functor Lp∗A is fully faithful.

Proof. In the commutative setting this is proven using the derived projection
formula and the fact that Rp∗ ◦ Lp∗(OX) ∼= OX . In the noncommutative
setting the appropriate projection formula is given as the first isomorphism
in [26, lemma 10.12] taking into account that we have a bimodule structure,
whilst the isomorphism

RpA,∗ ◦ Lp
∗
A(A) ∼= A (55)

follows from the third isomorphism in loc. cit.

By the assumption that A|Y ∼= Matn(OY ) and the projection formula as
given in the third isomorphism of loc. cit. we have that [32, lemma 4.2] goes
through as stated. In particular we only need to check that the semiorthogonal
decomposition is indeed full.
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of theorem 30. We can mimick the proof of the first part of [32, theorem 4.3].
Consider an object in the right orthogonal of (54), in particular it is right
orthogonal to Lp∗A(D

b(X,A)). As Serre duality for sheaves of maximal orders
takes on the expected form by [40, corollary 2] we get that Rp∗ of this object is
indeed zero, and therefore that it is contained in the minimal full subcategory
containing the image of D(E,Matn(OE)).

Now use that blowups commute with flat base change, in particular we can
take an étale neighbourhood of the exceptional divisor that splits A and such
that its image in X and the ramification divisor are disjoint. Then we are in
the usual setting of Orlov’s blowup formula (up to Morita equivalence), and we
can use the usual proof to conclude that the object is indeed zero.

Two remarks are in order, which are already important in the case of blowing
up a point on a surface.

Remark 34. If we were to blow up a point on the ramification divisor, then
the resulting algebra is not necessarily of finite global dimension. Considering
the case of a Sklyanin algebra associated to a point of order 2, we have that the
complete local structure of this algebra at the point on the intersection of the
exceptional divisor and the ramification locus is given by

(
R R

(xy) R

)
(56)

where R = k[[x, y]]. One then checks that the module
(

0
R/(x)

)
has a periodic

minimal projective resolution of the form

. . .→

(
(xy)
(xy)

)
⊕

(
(x)
(x2y)

)
ψ′

→

(
(x)
(x)

)
⊕

(
R

(xy)

)
ϕ
→

(
R
R

)
ψ
→

(
0

R/(x)

)
→ 0 (57)

To see that this resolution is in fact periodic, note that ker(ψ′) ∼= ker(ψ) as

ker(ψ) =

(
R
(x)

)
and ker(ψ′) ∼=

(
(xy)
(x2y)

)
= xy

(
R
(x)

)
. (58)

This description also shows that the result is no longer a maximal order, and
there is a choice of embedding, as explained in [16, §4]. Without the embedding
in a maximal order one does not expect a meaningful semiorthogonal decom-
position. In this paper we do not need to take a maximal order containing the
pullback as it is already maximal using the Auslander–Goldman criterion.

Remark 35. In the construction of [38] a point on the point scheme is blown
up. For an algebra finite over its center this is not the same as the ramification
curve, these two curves are only isogeneous. In the context of the previous
remark, the difference is measured by the choice of a maximal order containing
the pullback.
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4 Properties of the maximal orders

In the minimal model program for orders on surfaces as studied in [16, 2] there
exists the notion of del Pezzo orders, and (half-)ruled orders. The orders we
have constructed are obviously not minimal, but they give rise to interesting
examples in the study of maximal orders.

In the commutative case the surface Blx P
2 = F1 is both del Pezzo and ruled.

We are considering orders on this surface, and for the value of m = 2 in the
classification we obtain that it is both del Pezzo and half ruled, as explained in
proposition 39 and proposition 45.

This latter notion is introduced by Artin, to describe a class of orders which
is not ruled, but whose cohomological properties mimick those of ruled orders.

4.1 The case m = 2 is del Pezzo

In this section we quickly recall the notion of del Pezzo order, and show that the
intuition from numerical blowups from [21] agrees with the a priori independent
notion of del Pezzo order, introduced in [18, §3].

Throughout we let A be a maximal order on a smooth projective surface S.

Definition 36. The canonical sheaf of A is the A-bimodule

ωA := HomOS
(A, ωS). (59)

Now denote ω∗
A := HomA(ωA,A), whereas F∨ is used for HomOS

(F ,OS),
hence the reflexive hull is denoted F∨∨.

Definition 37. Let L be an invertibleA-bimodule, which is moreoverQ-Cartier,
i.e. (L⊗n)∨∨ is again invertible for some n. Then L is ample if

Rq HomA(A, (L
⊗k)∨∨ ⊗F) ∼= Hq(S, (L⊗k)∨∨ ⊗F) (60)

is zero for q ≥ 1 and k ≫ 0, where the isomorphism is induced by applying the
forgetful functor.

Then analogous to the commutative situation we define

Definition 38. The maximal order A is del Pezzo if ω∨
A is ample.

In particular, by [18, lemma 8] it suffices to check that the divisor

KA = KS +

n∑

i=1

(
1−

1

ei

)
Ci (61)

is anti-ample: the del Pezzoness only depends on the center and the ramification
data.

Proposition 39. Let A be the pullback of a maximal order of degree m on P2

ramified on a cubic curve along the blowup F1 → P2 in a point outside the
ramification locus. Then A is del Pezzo if and only if m = 2.
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Proof. If we denote PicF1 = ZH⊕ZE, such thatH2 = 1,H ·E = 0 and E2 = −1,
then

KA = −3p∗(H) + E +

(
1−

1

m

)
3p∗(H)

=
−3

m
p∗(H) + E

(62)

because the ramification data for the pullback is the pullback of the ramification
data, which is a cyclic cover of degree n ≥ 2 of an elliptic curve.

By the Kleiman criterion for ampleness we need to check that −KA ·C ≥ 0,
for C in the Mori–Kleiman cone of F1. This cone is spanned by a fibre f and the
section C0 of the projection F1 → P1. We have that p∗(H) = C0+f and E = C0

in the translation between the canonical bases for Pic(F1) and Pic(Blx P
2).

Using the description of the intersection form on a ruled surface we obtain

−KA · f =
3

m
− 1,

−KA · C0 = 1.
(63)

The first intersection number is positive if and only if m = 2. The second
intersection number is always positive.

Remark 40. The computation for the del Pezzoness of the numerical blowup
reduces to the same equation (up to multiplication by m2).

Remark 41. For the case m = 2 the equations for a Sklyanin algebra from
example 4 take on a particularly easy form





xy + yx+ cz2 = 0

yz + zy + cx2 = 0

zx+ xz + cy2 = 0

(64)

where c3 6= 0, 1,−8, [19, theorem 3.1]. The case c = 0 corresponds to an order
associated to a so called skew polynomial algebra, and the ramification curve is
a triangle of P1’s. If c3 = 1,−8 the ramification curve is the union of a conic
and a line in general position. We will come back to this situation in [10].

4.2 The case m = 2 is half ruled

In the following definition, the curve of genus 0 will be a curve over the function
field of the base curve of a ruled surface, i.e. if we consider π : S → C over the
field k, then K will be the function field of P1

k(C).

Definition 42. LetA be a maximal order in a central simple algebra of degree 2
over the function field K of a curve X of genus 0. If A is ramified in 3 points,
with ramification degree 2 in each point, then we say that A is half ruled.

Remark 43. The case where the ramification is of type (e, e) is the ruled case.

20



It is shown in [2, proposition 4.2.4] that being (half-)ruled is equivalent to
the Euler characteristic χ(X,A) of the coherent sheaf A being positive.

The following definition seems to be missing as such from the literature, but
it is used implicitly in [2].

Definition 44. Let A be a maximal order on a ruled surface S → C. Then we
say that it is half ruled if the fiber of the order over the generic point of C is
half ruled.

Proposition 45. The sheaf of maximal orders constructed for the case m = 2
is half ruled.

Proof. The ramification divisor on P2 being a cubic curve we get that the generic
intersection of the fibre of the ruling with the inverse image of the ramification
divisor in F1 is 3, which proves the claim.

4.3 The case m = 3 is elliptic

We will reuse the notation of section 4.2.

Definition 46. LetA be a maximal order in a central simple algebra of degree 3
over the function field K of a curve X of genus 0. If A is ramified in 3 points,
with ramification degree 3 in each point, then we say that A is elliptic.

The following proposition is proven in the same way as proposition 45.

Proposition 47. The sheaf of maximal orders constructed for the case m = 3
is elliptic.
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